Noise Aware and Combined Noise Models for Speech Denoising in Unknown Noise Conditions

نویسندگان

  • Pavlos Papadopoulos
  • Colin Vaz
  • Shrikanth S. Narayanan
چکیده

Traditional denoising schemes require prior knowledge or statistics of the noise corrupting the signal, or estimate the noise from noise-only portions of the signal, which requires knowledge of speech boundaries. Extending denoising methods to perform well in unknown noise conditions can facilitate processing of data captured in different real life environments, and relax rigid data acquisition protocols. In this paper we propose two methods for denoising speech signals in unknown noise conditions. The first method has two stages. In the first stage we use Long Term Signal Variability features to decide which noise model to use from a pool of available models. Once we determine the noise type, we use Nonnegative Matrix Factorization with a dictionary trained on that noise to denoise the signal. In the second method, we create a combined noise dictionary from different types of noise, and use that dictionary in the denoising phase. Both of our systems improve signal quality, as measured by PESQ scores, for all the noise types we tested, and for different Signal to Noise Ratio levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of combined effects of noise and low air temperature on human-environmental comfort and physiological responses- An experimental study

Background and Aim: Combined exposure to noise and temperature can affect the neurophysiological responses of the office staff. The present study was done to investigate the impacts of combined exposure to noise and low air temperature on physiological responses and environmental comfort. Methods: In this experimental study, the studied population included the students who were randomly selecte...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

A Block-Grouping Method for Image Denoising by Block Matching and 3-D Transform Filtering

Image denoising by block matching and threedimensionaltransform filtering (BM3D) is a two steps state-ofthe-art algorithm that uses the redundancy of similar blocks innoisy image for removing noise. Similar blocks which can havesome overlap are found by a block matching method and groupedto make 3-D blocks for 3-D transform filtering. In this paper wepropose a new block grouping algorithm in th...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

Improved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images

Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016